Олово — химический элемент таблицы Менделеева под номером 14. Он относится к разряду легких цветных металлов. В твердом (естественном) состоянии он представляет собой вещество бело-серого цвета. Олово имеет небольшую массу, хорошо поддается пайке, плавлению, ковке и другим методам механической обработки. Оно может преобладать в различных аллотропических состояниях. Всего их четыре вида — α-Sn чаще всего встречается при температуре не более +13,2 градуса. β-олово получается если температурный показатель превышает +13,2 градуса. При высоких давлениях во внешней среде можно наблюдать образование y и γ-олова.
Впервые олово обнаружили еще около четырех тысяч лет назад. В давние времена серебристый металл был довольно редким материалом и стоил очень дорого. В основном его использовали как составляющую бронзовых сплавов. Как известно в те времена бронза была основным техническим материалом, из которого изготавливали различные вещи — посуду, инструменты, оружие, доспехи, украшения и другие предметы быта. Олово, присутствующее в составе бронзовых изделий ценилось на протяжении многих веков, сравнительно с другими металлами, которые тогда добывались.
Олово наделено множественными свойствами и вступает в реакцию со многими металлами, неметаллами и другими элементами периодической таблицы Менделеева. Поэтому рассмотрим общие характеристики вещества:
Олово — это элемент, относящийся к классу полиморфических металлов. В быту многие сталкиваются с его бета-модификацией. Это белое олово со стойкостью к температурам от 14 и выше градусов по Цельсию. Внешне оно представляет собой пластичный и мягкий материал белого цвета. Его структура представлена в виде кристаллической решетки, построенной по типу тетрагональной сингонии. Его атомное строение обуславливается окружением октаэдров, что дает олову плотность до 7,2 г/куб. м. Если зажать кусок олова в тиски и прислушаться, можно наблюдать своеобразный хруст, исходящий от трущихся кристаллов.
При воздействии низкой температуры на белое олово, структура металла начинает меняться, постепенно переходя в альфа-версию, приобретая серый оттенок. Это обуславливается тем, что при падении температуры ниже 0 градусов, кристаллы формируют новую структуру, как у алмаза. При этом, увеличивается объем металла, и он постепенно начинает распадаться, пока окончательно не превратиться в оловянный порошок.
Переход с одной модификации в другую, обуславливается воздействием низкой температуры. В естественных условиях окружающей среды, этот переход проходит немного быстрее, а максимально быстрый распад достигается при температуре — 33 градуса. Однако образование порошкообразного вещества может происходить не только под влиянием низких температур. Ионное излучение также может вызвать распад металла и его переход в состояние порошка. Существует возможность изменить структуру олова до гелиевого состояния, если достичь необходимого охлаждения в определенных условиях.
Электрофизические характеристики олова обуславливаются его структурой, поэтому каждой модификации присущи свои показатели. Например, бета-олово считается металлом, а версия альфа является полупроводником, который используется при пайке. При воздействии внешних факторов, альфа-олово (ниже 3,72 К) преобразуется в модификацию сверхпроводника. При этом атомы кристаллической решетки бета-модификации образуют s2p2, а форма альфа обращается в состояние sp3. При воздействии магнитного поля олово может проявлять себя по-разному. В одном случае оно парамагнитно, но при определенных обстоятельствам может стать диамагнитным.
Если представить, что различные модификации будут взаимодействовать между собой, то бета-олово может быстро трансформироваться в альфа-олово. Это происходит потому, что структура олова не постоянна. Такой процесс перехода можно сравнить с заражением. Такое поведение металла было замечено еще в 1870 году, и названо уже в 1911 году "оловянной чумой".
В ходе экспериментов и химических опытов было установлено, что заражение можно предотвратить и даже остановить. Для этого необходимо использовать химический элемент — висмут. Ученые даже нашли способ, чтобы ускорить процесс перехода с бета до альфа-версии. Этому способствует химическая реакция олова с хлор станнатом аммония.
Олово способно локализоваться, как в открытых источниках, так и глубоко под землей. По наблюдениям ученых, процент содержания зарегистрированных источников ничтожно мал. А вот в олово-рудных ресурсах объем минерала значительно увеличивается. В последнее время большую часть находят в воде. Это обуславливается разложением нестабильных минералов, в окисленных зонах.
В природе олово встречается очень редко. Если сравнить его распространенность с другими металлами, то в этой категории оно занимает 47 место по всей земле. Запасы элемента в земном массиве варьируются в пределах от 2*10-4 до 8*10-3 %, без учета ресурсов в океанских и морских глубинах. Преобладающим минералом, из которого получают олово, считается касситерит. Он содержит в себе порядка 79% металла.
Самые большие запасы олова находятся в южных континентах — Китае и Японии. Помимо этого, немалые залежи оловянной руды найдены в Южной Америке. Россия также является месторождением данного минерала.
Учитывая, что олово является амфотерным веществом, то помимо основных свойств, оно может проявлять кислотные и щелочные характеристики. Благодаря им, появляется вероятность выявления олова во внешней среде. Элемент по некоторым свойствам похож на кварц, что дает возможность определять связь минерала как оксид с соединениями кислот. Большое содержание олова в ископаемых источниках может формировать кварцево-касситеритовые руды. Его щелочные свойства можно заметить в различных сульфитах.
Олово часто встречается в составе горных образований, наполняющих земную кору. Реже его можно встретить в результате образования вулканических пород и других минеральных соединений. Самые большие запасы элемента преобладают в окисной форме.
Оловянная чума стала причиной трагических событий 1912, во время экспедиции Скотта на Южный полюс. Его путешествие закончилось преждевременно, а виной тому стали оловянные крышки на бачках с горючим. Находясь в холодных климатических условиях, температура достигла той отметки, когда олово преобразовалось в порошок, и все топливные запасы были потеряны.
Олово имеет постоянное количество нуклидов. Количество протонов у него приравнивается к 50-ти. Они равномерно насыщают зону вокруг ядра, что прибавляет больше энергетики. Поэтому, их число считают магическим, а сам элемент располагает максимальным объемом неизменных изотопов, по сравнению с другими элементами. В металле содержаться два изотопа, которые при выпадении из бета-олова становятся радиоактивными.
В условиях внешней среды олово может преобладать в трех основных видах:
Рассеянный класс. Неопределенность названия говорит о том, что неизвестно в какой конкретной форме находится элемент. Обычно олово наблюдается в изоморфной рассеянной форме вместе с другими сопутствующими веществами. К ним относятся вольфрам, ниобий и тантал, которые образуют кислотные соединения. Цезий, Таллий и Ванадий способствуют формированию кислых и сульфидных связей. Если олово преобладает в обычном состоянии, то реагенты замещаются в различном изоморфном порядке.
Минеральный тип. Данный тип обуславливает наличием олова в различных минералах. Чаще всего ими являются гранаты, магнетиты, турмалины и другие образования. Обычно их взаимодействие влияет только на преобразование химического состава элемента, не нарушая его структуру. Максимальной накаляемостью в оловоносных минералах наблюдается соединение с гранатами, эпитодами и другими минералами.
Источники сульфидов содержат высокий процент олова как изоморфного компонента. В приморском регионе России найдены новые месторождения сфалеритов, халькопиритов, пиритов и других минералов. Учитывая ограничение изоморфных структур, то при этом случается разложение образца с выпадением филлита.
Как природный материал, олово может встречаться не только в различных минералах, породных образованиях, но и других источниках в виде различных соединений.
Олово способно формироваться в совокупности с иными химическими веществами в геологических условиях, которые можно классифицировать следующим образом:
Образование руд происходят по сей день. Причиной вполне могут служить океанические осадки с Тихого океана, гидротермальной камчатской зоны или продукты выбросов Тол Бачинского вулкана.
Эффузивные или интрузивные магматические залежи траппов и пикритов на сибирской площадке, а также габброиды, гипербазит и магматические породы, локализующиеся на Камчатке.
Преобразование пород при гидротермическом и метасоматическом влиянии. К таковым стоит отнести золотоносные или медно-никелиевые залегания на территории России и Узбекистана.
Наиболее встречающимся оловянным ресурсом считается касситерит (SnO2). Он представлен в виде окисного соединения олова с кислородом. Учитывая, что этот образец является наиболее встречающимся минералом, содержащим большой процент олова, то первым делом нужно обращать внимание на его структуру. Если детально осмотреть образец породы, то можно наблюдать отдельные кристаллы олова. Они могут достигать до 3-4 мм в диаметре, а в некоторых случаях и больше.
На основе достоверной информации, подобные источники белого или серого металла занимают не лидирующие позиции. Они представлены в форме солей поли оловянных кислот. К таким можно отнести варламовит, сукулаит или отвердевшую примесь олова в магнетите. Чаще всего это полу аморфные соединения элемента. Помимо этого, олово содержится в оксидных соединениях — CuSn(OH)6, 3SnO·H2O и других оксидах.
Еще одним распространенным минералом, содержащим олово, является малахит. Он принадлежит к классу силикатов, которые способны формировать огромные залежи металла.
Шпинелиды являются еще одним источником окисных соединений, которые содержат оловянные примеси. Основным веществом считается нигерит.
Данный класс обуславливается соединением олова с серными породами. В производственной сфере они занимают вторую позицию. Основным материалом добычи олова является станнин. Помимо этого, к этой группе можно отнести и другие соединение на основе цветных металлов: Cu, Pb или Ag. Такие руды могут содержать различный процент олова, в зависимости от климатических условий.
Оловянный колчедан — это второе название данного минерала, относящегося к сульфидному классу. Он является самым распределенным источником олова, залегающим на территории России. Процентное содержания искомого металла составляет от 10 до 40%. При увеличении этой доли можно наблюдать признаки разложения станина, сопровождающиеся выделением касситерита.
С геохимической точки зрения, олово является сложным элементом, поэтому изучено оно не до конца. В природе можно наблюдать олово-кремнистые соединения, относящиеся к группе коллоидов. В основном, олово образуется в результате изменения структуры кристаллической решетки многих соединений и элементов. Благодаря этому и коломорфным связям, металл может изменять свое физическое состояние, образуя гелеобразные смеси.
В ходе множественных экспериментов, ученые выяснили, что при взаимодействии металла с хром-кремневым соединением, олово видоизменяется. При этом его коллоидная форма используется как вспомогательное звено.
Чтобы понять, как изменяется форма и химические свойства олова, необходимо рассмотреть несколько примеров перехода металла в жидкое состояние.
Учитывая, что его геохимические свойства являются наиболее неизученным разделом, то предоставленная информация, это не результаты проведенных опытов или исследований, а всего лишь теоретические выводы ученых. Основываясь на этих фактах, можно разделить локализацию олова в смесях на следующие классы:
Все наблюдения по поводу реакций или структуры ионных соединений, строятся на геохимических и валентных предположениях. Они делятся на две основные группы:
Простые ионы, которые наблюдались в примесях с малой долей рН и продуктах магматического разложения. Однако конкретных форм при условии газового или жидкого состояния металла выявлены небыли.
Галогениды — вещества, содержащие фтор и воздействующие на металл в процессе разложения и перехода в иное состояние.
Минеральные формы гидроксильных соединений в щелочной среде часто образуют двух, трех и четырехвалентные оловянные кислоты (H2SnO). Они могут формироваться естественным образом или иметь искусственное происхождение. Результаты проведенных исследований показали, что олово в составе кислот проявляется очень слабо и способна формировать химические комбинации по подобию варламовита.
Сульфидные связи в кислотной сфере крайне неустойчивы.
Комплексная связь была обнаружена в результате опытов, методом воздействия фторовых соединений на касситерит. Анализы показали, фторовые и хлоридные растворы при воздействии на минералы проявляют идентичные свойства. В ходе исследований было проделано несколько опытов с различными реактивами. В результате получились совокупные соединения модели Na2[Sn(OH)2F4]. И это только один из множественных образцов, которые были получены.
Олова-кремневые и коллоидные образования формируются при наличии касситерита, который наблюдается практически во всех оловянных месторождениях.
Производственный процесс по изготовлению олова состоит из нескольких этапов. Сначала приготовленную руду помещают в специальные дробилки и мельницы, где минерал приобретает мелкую фракцию (кусочки не более 10 мм в диаметре). Затем гравитационно-вибрационным методом извлекаются частицы касситерита. Наряду с этим применяется флотационный метод обогащения минерала, после которого касситерит приобретает концентрат олова до 70%.
В ходе последующей переработки сырья, осуществляется удаление мышьяка и серы. После этого, полученный продукт отправляют в печь для выплавки. Там минерал послойно смешивается с древесными углями, для освобождения его от ненужных веществ. Здесь же добавляется Zn, Pb или Cu. Для очищенного олова используется метод плавки.
Благодаря свои антикоррозийным свойствам, олово широко применяется при литье различных сплавов. Оно является одним из основных компонентов бронзы, изготовления белой жести и других материалов. Его успешно используют в электротехнической сфере для пайки контактов и микросхем. Олово также необходимо при производстве посуды, которая выполняется и специального оловянного сплава — пьютера.
Во всех вышеперечисленных случаях, элемент используется в малых долях. Большая часть олова приходится на плавление с медью, цинком, свинцом и сурьмой. Также возможно сочетание некоторых элементов: медь с цинком, медь с сурьмой и другие. Благодаря своей экологичности и проводимости, олово используют для изготовления кабелей с большой электропроводностью.
Также олово применяется для изготовления лакокрасочных материалов, которые имитирую золотистое покрытие. Цинко-оловянные соединения используют для легирования стали и нержавеющих сплавов из черного металла.
Помимо этого, оловянные изомеры, полученные искусственным путем являются источниками гамма-излучения, поэтому их успешно применяют в спектроскопии.
Благодаря своим свойствам, олово участвует в производстве анода и различного рода химических испытаниях. На основе свинцово-оловянных сплавов делают аккумуляторные батареи. Они превосходят обычные АКБ по качеству, емкости и сроку службы. Их энергетическая плотность в 5 раз превышает энергию обычных свинцовых аккумуляторов, имея при этом наименьшее сопротивление.